Comparative Analysis of Algorithmic Approaches for Auto-Coding with ICD-10-AM and ACHI.


Clinical coding is done using ICD-10-AM (International Classification of Diseases, version 10, Australian Modification) and ACHI (Australian Classification of Health Interventions) in acute and sub-acute hospitals in Australia for funding, insurance claims processing and research. The task of assigning a code to an episode of care is a manual process. This has posed challenges due to increase set of codes, the complexity of care episodes, and large training and recruitment costs of clinical coders. Use of Natural Language Processing (NLP) and Machine Learning (ML) techniques is considered as a solution to this problem. This paper carries out a comparative analysis on a selected set of NLP and ML techniques to identify the most efficient algorithm for clinical coding based on a set of standard metrics: precision, recall, F-score, accuracy, Hamming loss and Jaccard similarity.

Further Information

Authors : Rajvir Kaur and Jeewani Anupama Ginige
Publication Year : 2018
Publication Type : 1
Conference Name : Australia's premier digital health conference (HIC-2018)
Conference Location : Sydney, Australia
Volume : 252
Pages : 73-79
Publisher : IOS Press
Link to article :
Conference Website :
Go Back to Publication